Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Microbiol Spectr ; 11(3): e0327322, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2326012

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019, and the resulting pandemic has already caused the death of over 6 million people. There are currently few antivirals approved for treatment of the 2019 coronavirus disease (COVID-19), and more options would be beneficial, not only now but also to increase our preparedness for future coronavirus outbreaks. Honokiol is a small molecule from magnolia trees for which several biological effects have been reported, including anticancer and anti-inflammatory activities. Honokiol has also been shown to inhibit several viruses in cell culture. In this study, we determined that honokiol protected Vero E6 cells from SARS-CoV-2-mediated cytopathic effect, with a 50% effective concentration of 7.8 µM. In viral load reduction assays, honokiol decreased viral RNA copies as well as viral infectious progeny titers. The compound also inhibited SARS-CoV-2 replication in the more relevant human A549 cells expressing angiotensin converting enzyme 2 and transmembrane protease serine 2. Time-of-addition and other assays showed that honokiol inhibited virus replication at a post-entry step of the replication cycle. Honokiol was also effective against more recent variants of SARS-CoV-2, including Omicron, and it inhibited other human coronaviruses as well. Our study suggests that honokiol is an interesting molecule to be evaluated further in animal studies and, when successful, maybe even in clinical trials to investigate its effect on virus replication and pathogenic (inflammatory) host responses. IMPORTANCE Honokiol is a compound that shows both anti-inflammatory and antiviral effects, and therefore its effect on SARS-CoV-2 infection was assessed. This small molecule inhibited SARS-CoV-2 replication in various cell-based infection systems, with up to an ~1,000-fold reduction in virus titer. In contrast to earlier reports, our study clearly showed that honokiol acts on a postentry step of the replication cycle. Honokiol also inhibited different recent SARS-CoV-2 variants and other human coronaviruses (Middle East respiratory syndrome CoV and SARS-CoV), demonstrating its broad spectrum of antiviral activity. The anticoronavirus effect, combined with its anti-inflammatory properties, make honokiol an interesting compound to be further explored in animal coronavirus infection models.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Antiviral Agents/pharmacology , Cell Culture Techniques
2.
International journal of molecular sciences ; 24(5), 2023.
Article in English | EuropePMC | ID: covidwho-2283882

ABSTRACT

The SARS-CoV-2 pandemic highlighted the need for broad-spectrum antivirals to increase our preparedness. Patients often require treatment by the time that blocking virus replication is less effective. Therefore, therapy should not only aim to inhibit the virus, but also to suppress pathogenic host responses, e.g., leading to microvascular changes and pulmonary damage. Clinical studies have previously linked SARS-CoV-2 infection to pathogenic intussusceptive angiogenesis in the lungs, involving the upregulation of angiogenic factors such as ANGPTL4. The β-blocker propranolol is used to suppress aberrant ANGPTL4 expression in the treatment of hemangiomas. Therefore, we investigated the effect of propranolol on SARS-CoV-2 infection and the expression of ANGPTL4. SARS-CoV-2 upregulated ANGPTL4 in endothelial and other cells, which could be suppressed with R-propranolol. The compound also inhibited the replication of SARS-CoV-2 in Vero-E6 cells and reduced the viral load by up to ~2 logs in various cell lines and primary human airway epithelial cultures. R-propranolol was as effective as S-propranolol but lacks the latter's undesired β-blocker activity. R-propranolol also inhibited SARS-CoV and MERS-CoV. It inhibited a post-entry step of the replication cycle, likely via host factors. The broad-spectrum antiviral effect and suppression of factors involved in pathogenic angiogenesis make R-propranolol an interesting molecule to further explore for the treatment of coronavirus infections.

3.
J Innate Immun ; 2023 Mar 25.
Article in English | MEDLINE | ID: covidwho-2283884

ABSTRACT

The consequences of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can range from asymptomatic to fatal disease. Variations in epithelial susceptibility to SARS-CoV-2 infection depend on the anatomical location from the proximal to distal respiratory tract. However, the cellular biology underlying these variations is not completely understood. Thus, air-liquid interface (ALI) cultures of well-differentiated primary human tracheal and bronchial epithelial cells were employed to study the impact of epithelial cellular composition and differentiation on SARS-CoV-2 infection by transcriptional (RNA sequencing) and immunofluorescent analyses. Changes of cellular composition were investigated by varying time of differentiation or by using specific compounds. We found that SARS-CoV-2 primarily infected ciliated cells but also goblet cells and transient secretory cells. Viral replication was impacted by differences in cellular composition, which depended on culturing time and anatomical origin. A higher percentage of ciliated cells correlated with a higher viral load. However, DAPT-treatment, which increased number of ciliated cells and reduced goblet cells, decreased viral load, indicating the contribution of goblet cells to infection. Cell-entry factors, especially cathepsin L and transmembrane protease serine 2, were also affected by differentiation time. In conclusion, our study demonstrates that viral replication is affected by changes in cellular composition, especially in cells related to the mucociliary system. This could explain in part the variable susceptibility to SARS-CoV-2 infection between individuals and between anatomical locations in the respiratory tract.

4.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2283883

ABSTRACT

The SARS-CoV-2 pandemic highlighted the need for broad-spectrum antivirals to increase our preparedness. Patients often require treatment by the time that blocking virus replication is less effective. Therefore, therapy should not only aim to inhibit the virus, but also to suppress pathogenic host responses, e.g., leading to microvascular changes and pulmonary damage. Clinical studies have previously linked SARS-CoV-2 infection to pathogenic intussusceptive angiogenesis in the lungs, involving the upregulation of angiogenic factors such as ANGPTL4. The ß-blocker propranolol is used to suppress aberrant ANGPTL4 expression in the treatment of hemangiomas. Therefore, we investigated the effect of propranolol on SARS-CoV-2 infection and the expression of ANGPTL4. SARS-CoV-2 upregulated ANGPTL4 in endothelial and other cells, which could be suppressed with R-propranolol. The compound also inhibited the replication of SARS-CoV-2 in Vero-E6 cells and reduced the viral load by up to ~2 logs in various cell lines and primary human airway epithelial cultures. R-propranolol was as effective as S-propranolol but lacks the latter's undesired ß-blocker activity. R-propranolol also inhibited SARS-CoV and MERS-CoV. It inhibited a post-entry step of the replication cycle, likely via host factors. The broad-spectrum antiviral effect and suppression of factors involved in pathogenic angiogenesis make R-propranolol an interesting molecule to further explore for the treatment of coronavirus infections.


Subject(s)
COVID-19 , Animals , Chlorocebus aethiops , Humans , Propranolol/pharmacology , SARS-CoV-2 , Vero Cells , Cell Line , Antiviral Agents/pharmacology , Virus Replication
5.
Elife ; 112022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2276806

ABSTRACT

Detection of SARS-coronavirus-2 (SARS-CoV-2) specific CD4+ and CD8+ T cells in SARS-CoV-2-unexposed donors has been explained by the presence of T cells primed by other coronaviruses. However, based on the relative high frequency and prevalence of cross-reactive T cells, we hypothesized CMV may induce these cross-reactive T cells. Stimulation of pre-pandemic cryo-preserved PBMCs with SARS-CoV-2 peptides revealed that frequencies of SARS-CoV-2-specific T cells were higher in CMV-seropositive donors. Characterization of these T cells demonstrated that membrane-specific CD4+ and spike-specific CD8+ T cells originate from cross-reactive CMV-specific T cells. Spike-specific CD8+ T cells recognize SARS-CoV-2 spike peptide FVSNGTHWF (FVS) and dissimilar CMV pp65 peptide IPSINVHHY (IPS) presented by HLA-B*35:01. These dual IPS/FVS-reactive CD8+ T cells were found in multiple donors as well as severe COVID-19 patients and shared a common T cell receptor (TCR), illustrating that IPS/FVS-cross-reactivity is caused by a public TCR. In conclusion, CMV-specific T cells cross-react with SARS-CoV-2, despite low sequence homology between the two viruses, and may contribute to the pre-existing immunity against SARS-CoV-2.

7.
Transpl Int ; 35: 10369, 2022.
Article in English | MEDLINE | ID: covidwho-1933952

ABSTRACT

Kidney transplant recipients (KTRs) are at increased risk for a more severe course of COVID-19, due to their pre-existing comorbidity and immunosuppression. Consensus protocols recommend lowering immunosuppression in KTRs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the optimal combination remains unclear. Calcineurin inhibitors (CNIs) are cornerstone immunosuppressants used in KTRs and some have been reported to possess antiviral activity against RNA viruses, including coronaviruses. Here, we evaluated the effect of the CNIs tacrolimus, cyclosporin A, and voclosporin (VCS), as well as other immunosuppressants, on SARS-CoV-2 replication in cell-based assays. Unexpected, loss of compound due to plastic binding and interference of excipients in pharmaceutical formulations (false-positive results) complicated the determination of EC50 values of cyclophilin-dependent CNI's in our antiviral assays. Some issues could be circumvented by using exclusively glass lab ware with pure compounds. In these experiments, VCS reduced viral progeny yields in human Calu-3 cells at low micromolar concentrations and did so more effectively than cyclosporin A, tacrolimus or other immunosuppressants. Although, we cannot recommend a particular immunosuppressive regimen in KTRs with COVID-19, our data suggest a potential benefit of cyclophilin-dependent CNIs, in particular VCS in reducing viral progeny, which warrants further clinical evaluation in SARS-CoV-2-infected KTRs.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/therapeutic use , Cell Culture Techniques , Cyclophilins , Cyclosporine/pharmacology , Humans , Immunosuppressive Agents/adverse effects , Tacrolimus/pharmacology
8.
Nat Commun ; 13(1): 1722, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1773975

ABSTRACT

The rapidly growing popularity of RNA structure probing methods is leading to increasingly large amounts of available RNA structure information. This demands the development of efficient tools for the identification of RNAs sharing regions of structural similarity by direct comparison of their reactivity profiles, hence enabling the discovery of conserved structural features. We here introduce SHAPEwarp, a largely sequence-agnostic SHAPE-guided algorithm for the identification of structurally-similar regions in RNA molecules. Analysis of Dengue, Zika and coronavirus genomes recapitulates known regulatory RNA structures and identifies novel highly-conserved structural elements. This work represents a preliminary step towards the model-free search and identification of shared and conserved RNA structural features within transcriptomes.


Subject(s)
Zika Virus Infection , Zika Virus , Algorithms , Humans , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , RNA, Guide, Kinetoplastida , Sequence Analysis, RNA/methods , Zika Virus/genetics
9.
J Am Chem Soc ; 144(7): 2905-2920, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1683927

ABSTRACT

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/metabolism , Cysteine Proteinase Inhibitors/pharmacokinetics , Drug Evaluation, Preclinical , Humans , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/enzymology , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacokinetics , Vero Cells
10.
Nat Methods ; 18(3): 249-252, 2021 03.
Article in English | MEDLINE | ID: covidwho-1096329

ABSTRACT

RNA structure heterogeneity is a major challenge when querying RNA structures with chemical probing. We introduce DRACO, an algorithm for the deconvolution of coexisting RNA conformations from mutational profiling experiments. Analysis of the SARS-CoV-2 genome using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and DRACO, identifies multiple regions that fold into two mutually exclusive conformations, including a conserved structural switch in the 3' untranslated region. This work may open the way to dissecting the heterogeneity of the RNA structurome.


Subject(s)
Algorithms , Genome, Viral/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2/genetics , 3' Untranslated Regions/genetics , COVID-19 , Humans , Mutation/drug effects , Mutation/genetics , RNA, Viral/genetics , Sulfuric Acid Esters/pharmacology
11.
Nucleic Acids Res ; 48(22): 12436-12452, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-917707

ABSTRACT

SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome, whose outbreak caused the ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, only a handful of functionally-conserved coronavirus structural RNA elements have been identified to date. Here, we performed RNA structure probing to obtain single-base resolution secondary structure maps of the full SARS-CoV-2 coronavirus genome both in vitro and in living infected cells. Probing data recapitulate the previously described coronavirus RNA elements (5' UTR and s2m), and reveal new structures. Of these, ∼10.2% show significant covariation among SARS-CoV-2 and other coronaviruses, hinting at their functionally-conserved role. Secondary structure-restrained 3D modeling of these segments further allowed for the identification of putative druggable pockets. In addition, we identify a set of single-stranded segments in vivo, showing high sequence conservation, suitable for the development of antisense oligonucleotide therapeutics. Collectively, our work lays the foundation for the development of innovative RNA-targeted therapeutic strategies to fight SARS-related infections.


Subject(s)
COVID-19/prevention & control , Genome, Viral/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2/genetics , 5' Untranslated Regions/genetics , Algorithms , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Base Sequence , Binding Sites/genetics , COVID-19/epidemiology , COVID-19/virology , Conserved Sequence/genetics , Humans , Models, Molecular , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
12.
Eur J Med Chem ; 187: 111956, 2020 Feb 01.
Article in English | MEDLINE | ID: covidwho-733871

ABSTRACT

We have reported on aristeromycin (1) and 6'-fluorinated-aristeromycin analogues (2), which are active against RNA viruses such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). However, these exhibit substantial cytotoxicity. As this cytotoxicity may be attributed to 5'-phosphorylation, we designed and synthesized one-carbon homologated 6'-fluorinated-aristeromycin analogues. This modification prevents 5'-phosphorlyation by cellular kinases, whereas the inhibitory activity towards S-adenosyl-l-homocysteine (SAH) hydrolase will be retained. The enantiomerically pure 6'-fluorinated-5'-homoaristeromycin analogues 3a-e were synthesized via the electrophilic fluorination of the silyl enol ether with Selectfluor, using a base-build up approach as the key steps. All synthesized compounds exhibited potent inhibitory activity towards SAH hydrolase, among which 6'-ß-fluoroadenosine analogue 3a was the most potent (IC50 = 0.36 µM). Among the compounds tested, 6'-ß-fluoro-homoaristeromycin 3a showed potent antiviral activity (EC50 = 0.12 µM) against the CHIKV, without noticeable cytotoxicity up to 250 µM. Only 3a displayed anti-CHIKV activity, whereas both3a and 3b inhibited SAH hydrolase with similar IC50 values (0.36 and 0.37 µM, respectively), which suggested that 3a's antiviral activity did not merely depend on the inhibition of SAH hydrolase. This is further supported by the fact that the antiviral effect was specific for CHIKV and some other alphaviruses and none of the homologated analogues inhibited other RNA viruses, such as SARS-CoV, MERS-CoV, and ZIKV. The potent inhibition and high selectivity index make 6'-ß-fluoro-homoaristeromycin (3a) a promising new template for the development of antivirals against CHIKV, a serious re-emerging pathogen that has infected millions of people over the past 15 years.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Adenosine/chemical synthesis , Adenosine/chemistry , Adenosine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Virus Replication/drug effects
13.
Antimicrob Agents Chemother ; 64(8)2020 07 22.
Article in English | MEDLINE | ID: covidwho-574704

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic that originated in Wuhan, China, in December 2019 has impacted public health, society, the global economy, and the daily lives of billions of people in an unprecedented manner. There are currently no specific registered antiviral drugs to treat or prevent SARS-CoV-2 infections. Therefore, drug repurposing would be the fastest route to provide at least a temporary solution while better, more specific drugs are being developed. Here, we demonstrate that the antiparasitic drug suramin inhibits SARS-CoV-2 replication, protecting Vero E6 cells with a 50% effective concentration (EC50) of ∼20 µM, which is well below the maximum attainable level in human serum. Suramin also decreased the viral load by 2 to 3 logs when Vero E6 cells or cells of a human lung epithelial cell line (Calu-3 2B4 [referred to here as "Calu-3"]) were treated. Time-of-addition and plaque reduction assays performed on Vero E6 cells showed that suramin acts on early steps of the replication cycle, possibly preventing binding or entry of the virus. In a primary human airway epithelial cell culture model, suramin also inhibited the progression of infection. The results of our preclinical study warrant further investigation and suggest that it is worth evaluating whether suramin provides any benefit for COVID-19 patients, which obviously requires safety studies and well-designed, properly controlled randomized clinical trials.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Suramin/pharmacology , Virus Replication/drug effects , Animals , COVID-19 , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Repositioning , Humans , Pandemics , SARS-CoV-2 , Vero Cells , Viral Load/drug effects , COVID-19 Drug Treatment
14.
PLoS Comput Biol ; 16(2): e1007587, 2020 02.
Article in English | MEDLINE | ID: covidwho-7370

ABSTRACT

Genetic perturbation screens using RNA interference (RNAi) have been conducted successfully to identify host factors that are essential for the life cycle of bacteria or viruses. So far, most published studies identified host factors primarily for single pathogens. Furthermore, often only a small subset of genes, e.g., genes encoding kinases, have been targeted. Identification of host factors on a pan-pathogen level, i.e., genes that are crucial for the replication of a diverse group of pathogens has received relatively little attention, despite the fact that such common host factors would be highly relevant, for instance, for devising broad-spectrum anti-pathogenic drugs. Here, we present a novel two-stage procedure for the identification of host factors involved in the replication of different viruses using a combination of random effects models and Markov random walks on a functional interaction network. We first infer candidate genes by jointly analyzing multiple perturbations screens while at the same time adjusting for high variance inherent in these screens. Subsequently the inferred estimates are spread across a network of functional interactions thereby allowing for the analysis of missing genes in the biological studies, smoothing the effect sizes of previously found host factors, and considering a priori pathway information defined over edges of the network. We applied the procedure to RNAi screening data of four different positive-sense single-stranded RNA viruses, Hepatitis C virus, Chikungunya virus, Dengue virus and Severe acute respiratory syndrome coronavirus, and detected novel host factors, including UBC, PLCG1, and DYRK1B, which are predicted to significantly impact the replication cycles of these viruses. We validated the detected host factors experimentally using pharmacological inhibition and an additional siRNA screen and found that some of the predicted host factors indeed influence the replication of these pathogens.


Subject(s)
Gene Regulatory Networks , Host Microbial Interactions/genetics , Models, Biological , Viruses/genetics , Genes, Viral , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL